
Supplementary Material for ‘Learning Tree Struc-
ture in Multi-Task Learning’
A. Basic Lemmas for Proving Theorem 3
Before presenting the proof for Theorem 3, we first prove some
useful lemmas.

LEMMA 3. ‖CWT
h ‖1,2 ≤ (m− 1)

√
d‖Wh‖F .

Proof: For any matrix A ∈ Rr1×r2 , we have ‖A‖1,2 ≤
√
r‖A‖F ,

where r ≤ min(r1, r2) denotes the rank of A and the inequality
holds due to the Cauchy-Schwarz inequality. Based on the defini-
tion of the matrix C, we have

‖CWT
h ‖1,2 =

1

2

m∑
i=1

m∑
j 6=i
‖wh,i −wh,j‖2

≤
1

2

m∑
i=1

m∑
j 6=i

(
‖wh,i‖2 + ‖wh,j‖2

)
= (m− 1)‖WT

h ‖1,2
≤ (m− 1)

√
d‖Wh‖F ,

where the first inequality holds due to the triangular inequality for
vector norms. So we complete the proof. �

LEMMA 4. For any matrix pair A, Â ∈ Rd×m, we have

‖CAT ‖1,2 − ‖CÂT ‖1,2 ≤
∥∥∥(CAT −CÂT )E(A)

∥∥∥
1,2

.

The proof of Lemma 4 is similar to that of Lemma 1 in [1] and
hence we omit it here.

LEMMA 5. Assume that the training data is normalized to have
zero mean and unit variance. For h ∈ NH , if the regularization
parameter λh satisfies Eq. (19), then with probability at least 1 −
exp(− 1

2
(δ − dm log(1 + δ

dm
))), for an optimal solution Ŵ =∑H

h=1 Ŵh of problem (3) and any W =
∑H
h=1 Wh ∈ Rd×m,

where {Wh}Hh=1 satisfy the sequential constraints, we have

1

mn
‖XT vec(Ŵ)− vec(F∗)‖22 ≤

1

mn
‖XT vec(W)− vec(F∗)‖22

+ (m− 1)
√
d

H∑
h=1

λh(θh + 1)

∥∥∥∥(Ŵh −Wh

)D(Wh)
∥∥∥∥
F

. (25)

Proof. Since Ŵ is an optimal solution of problem (3), {Ŵh}Hh=1

satisfy the sequential constraints, and for any W =
∑H
h=1 Wh

satisfying the constraints too, we have

1

mn

m∑
i=1

‖XT
i

H∑
h=1

ŵh,i − yi‖22

≤
1

mn

m∑
i=1

‖XT
i

H∑
h=1

wh,i − yi‖22 +

H∑
h=1

λh

(
‖CWT

h ‖1,2 − ‖CŴT
h ‖1,2

)
.

By substituting yji = (x
(i)
j )Tw∗i + εji, i ∈ Nm, j ∈ Nn into the

above inequality, we can obtain

1

mn

m∑
i=1

‖XT
i

H∑
h=1

ŵh,i − f∗i ‖22 ≤
1

mn

m∑
i=1

‖XT
i

H∑
h=1

wh,i − f∗i ‖22

+
H∑
h=1

λh

(
‖CWT

h ‖1,2 − ‖CŴT
h ‖1,2

)
+

2

mn

H∑
h=1

〈
Z,Ŵh −Wh

〉
,

(26)

where Z = [X1ε1, · · · ,Xmεm] ∈ Rd×m with its (j, i)th entry
computed as zji =

∑n
k=1 x

(i)
ji εki and x(i)

jk denotes the (j, i)th entry

in Xi for the ith task. Since x
(i)
j is normalized to have zero mean

and unit variance and εji ∼ N (0, σ2), we have

zji ∼ N (0, σ2).

By defining a variable vji = 1
σ
zji, we can get that vji ∼ N (0, 1).

Thus we can get that a variable u with the definition as

u =

d∑
j=1

m∑
i=1

v2
ji =

1

σ2
‖Z‖2F ,

which follows a chi-squared distribution with the degree of freedom
as md. According to the Wallace inequality [2], for any δ > 0 we
have

Pr(u ≥ md+ δ) ≤ exp

(
−

1

2

(
δ −md log

(
1 +

δ

md

)))
.

Since u = 1
σ2 ‖Z‖2F , we obtain that

Pr
(

2

mn
‖Z‖F ≤

2σ

mn

√
md+ δ

)
= Pr (u ≤ md+ δ)

≥ 1− exp

(
−

1

2

(
δ −md log

(
1 +

δ

md

)))
.

(27)

Based on Assumption 1 and Eq. (27), with probability at least 1−
exp(− 1

2
(δ −md log(1 + δ

md
))) we have

2

mn

H∑
h=1

〈
Z,Ŵh −Wh

〉

≤
2

mn
‖Z‖F

H∑
h=1

‖Ŵh −Wh‖F

≤
2σ

mn

√
md+ δ

H∑
h=1

θh

∥∥∥∥(Ŵh −Wh

)D(Wh)
∥∥∥∥
F

.

(28)

Moreover, by using Lemma 3 and 4, we have

‖CWT
h ‖1,2 − ‖CŴT

h ‖1,2

≤
∥∥∥∥(CWT

h −CŴT
h

)E(Wh)
∥∥∥∥

1,2

≤ (m− 1)
√
d

∥∥∥∥(Wh − Ŵh

)D(Wh)
∥∥∥∥
F

. (29)

By combing Eqs. (26), (28), and (29), with probability at least
1− exp(− 1

2
(δ −md log(1 + δ

md
))) we have

1

mn
‖XT vec(Ŵ)− vec(F∗)‖22 ≤

1

mn
‖XT vec(W)− vec(F∗)‖22

+
H∑
h=1

(
2σ

mn

√
md+ δθh + (m− 1)

√
dλh

)∥∥∥∥(Ŵh −Wh

)D(Wh)
∥∥∥∥
F

.

By plugging Eq. (19) into the above equation, we complete the
proof. �

B. Proof of Theorem 3
Proof. By making Wh take value of W∗

h for h ∈ NH in Eq. (25),
we obtain

1

mn
‖XT vec(∆)‖22 ≤ (m− 1)

√
d

H∑
h=1

λh(θh + 1)
∥∥∥∆D(Wh)

h

∥∥∥
F
,

(30)



where ∆h = Ŵh−W∗
h and ∆ =

∑H
h=1 ∆h. Under Assumption

1, we have ∥∥∥∆D(Wh)
h

∥∥∥
F
≤
∥∥XT vec(∆)

∥∥
2

βh
√
mn

. (31)

By substituting Eq. (31) into Eq. (30), we obtain

‖XT vec(∆)‖2 ≤ (m− 1)
√
mndC. (32)

Therefore we can directly get Eq. (20) from Eq. (32). Since from
Assumption 1, we have

‖Ŵh −W∗
h‖F = θh

∥∥∥∥(Ŵh −W∗
h

)D(Wh)
∥∥∥∥
F

,

‖CŴT
h −C(W∗

h)T ‖1,2 = γh

∥∥∥∥(CŴT
h −C(W∗

h)T
)E(Wh)

∥∥∥∥
1,2

.

By combing Eqs. (29), (31), and (20), we can easily prove Eqs.
(21) and (22).

To prove Êh = E(W∗
h), we need to prove the following two

statements:

∀(i, j) ∈ Êh ⇒ (i, j) ∈ E(W∗
h), (33)

∀(i, j) ∈ E(W∗
h)⇒ (i, j) ∈ Êh. (34)

We first prove Eq. (33) by contradiction. Assume there exists a
pair (i′, j′) such that (i′, j′) ∈ Êh, but (i′, j′) 6∈ E(W∗

h). Then
according to the definitions of Êh and E(W∗

h), we have∥∥∥∥(CŴT
h −C(W∗

h)T
)(i′,j′)

∥∥∥∥
2

=

∥∥∥∥(CŴT
h

)(i′,j′)
∥∥∥∥

2

>
γh(m− 1)2dC

βh
,

which contradicts Eq. (22), hence we prove Eq. (33). Next we
prove Eq. (34) by contradiction. Similarly, assume there exists
(i′′, j′′) ∈ E(W∗

h), but (i′′, j′′) 6∈ Êh. Since (i′′, j′′) 6∈ Êh,
based on the definition of Êh in Eq. (24) we have∥∥∥∥(CŴT

h

)(i′′,j′′)
∥∥∥∥

2

≤
γh(m− 1)2dC

βh
.

Furthermore, using the condition in Eq. (23), we have∥∥∥∥(CŴT
h −C(W∗

h)T
)(i′′,j′′)

∥∥∥∥
2

≥
∥∥∥∥(C(W∗

h)T
)(i′′,j′′)

∥∥∥∥
2

−
∥∥∥∥(CŴT

h

)(i′′,j′′)
∥∥∥∥

2

>
γh(m− 1)2dC

βh
.

which contradicts Eq. (22). So Eq. (34) is correct, which completes
the proof. �
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